208 research outputs found

    Transcriptional changes in trichothiodystrophy cells

    Get PDF
    Mutations in three of the genes encoding the XPB, XPD and TTDA components of transcription factor TFIIH can result in the clinical phenotype of trichothiodystrophy (TTD). Different mutations in XPB and XPD can instead cause xeroderma pigmentosum (XP). The completely different features of these disorders have been attributed to TTD being a transcription syndrome. In order to detect transcriptional differences between TTD and XP cells from the XP-D complementation group, we have compared gene expression profiles in cultured fibroblasts from normal, XP and TTD donors. Although we detected transcriptional differences between individual cell strains, using an algorithm of moderate stringency, we did not identify any genes whose expression was reproducibly different in proliferating fibroblasts from each type of donor. Following UV-irradiation, many genes were up- and down-regulated in all three cell types. The microarray analysis indicated some apparent differences between the different donor types, but on more detailed inspection, these turned out to be false positives. We conclude that there are minimal differences in gene expression in proliferating fibroblasts from TTD, XP-D and normal donors

    Expression of Regulatory Platelet MicroRNAs in Patients with Sickle Cell Disease

    Get PDF
    Background: Increased platelet activation in sickle cell disease (SCD) contributes to a state of hypercoagulability and confers a risk of thromboembolic complications. The role for post-transcriptional regulation of the platelet transcriptome by microRNAs (miRNAs) in SCD has not been previously explored. This is the first study to determine whether platelets from SCD exhibit an altered miRNA expression profile. Methods and Findings: We analyzed the expression of miRNAs isolated from platelets from a primary cohort (SCD = 19, controls = 10) and a validation cohort (SCD = 7, controls = 7) by hybridizing to the Agilent miRNA microarrays. A dramatic difference in miRNA expression profiles between patients and controls was noted in both cohorts separately. A total of 40 differentially expressed platelet miRNAs were identified as common in both cohorts (p-value 0.05, fold change>2) with 24 miRNAs downregulated. Interestingly, 14 of the 24 downregulated miRNAs were members of three families - miR-329, miR-376 and miR-154 - which localized to the epigenetically regulated, maternally imprinted chromosome 14q32 region. We validated the downregulated miRNAs, miR-376a and miR-409-3p, and an upregulated miR-1225-3p using qRT-PCR. Over-expression of the miR-1225-3p in the Meg01 cells was followed by mRNA expression profiling to identify mRNA targets. This resulted in significant transcriptional repression of 1605 transcripts. A combinatorial approach using Meg01 mRNA expression profiles following miR-1225-3p overexpression, a computational prediction analysis of miRNA target sequences and a previously published set of differentially expressed platelet transcripts from SCD patients, identified three novel platelet mRNA targets: PBXIP1, PLAGL2 and PHF20L1. Conclusions: We have identified significant differences in functionally active platelet miRNAs in patients with SCD as compared to controls. These data provide an important inventory of differentially expressed miRNAs in SCD patients and an experimental framework for future studies of miRNAs as regulators of biological pathways in platelets. © 2013 Jain et al

    An integrative multi-platform analysis for discovering biomarkers of osteosarcoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>SELDI-TOF-MS (Surface Enhanced Laser Desorption/Ionization-Time of Flight-Mass Spectrometry) has become an attractive approach for cancer biomarker discovery due to its ability to resolve low mass proteins and high-throughput capability. However, the analytes from mass spectrometry are described only by their mass-to-charge ratio (<it>m</it>/<it>z</it>) values without further identification and annotation. To discover potential biomarkers for early diagnosis of osteosarcoma, we designed an integrative workflow combining data sets from both SELDI-TOF-MS and gene microarray analysis.</p> <p>Methods</p> <p>After extracting the information for potential biomarkers from SELDI data and microarray analysis, their associations were further inferred by link-test to identify biomarkers that could likely be used for diagnosis. Immuno-blot analysis was then performed to examine whether the expression of the putative biomarkers were indeed altered in serum from patients with osteosarcoma.</p> <p>Results</p> <p>Six differentially expressed protein peaks with strong statistical significances were detected by SELDI-TOF-MS. Four of the proteins were up-regulated and two of them were down-regulated. Microarray analysis showed that, compared with an osteoblastic cell line, the expression of 653 genes was changed more than 2 folds in three osteosarcoma cell lines. While expression of 310 genes was increased, expression of the other 343 genes was decreased. The two sets of biomarkers candidates were combined by the link-test statistics, indicating that 13 genes were potential biomarkers for early diagnosis of osteosarcoma. Among these genes, cytochrome c1 (CYC-1) was selected for further experimental validation.</p> <p>Conclusion</p> <p>Link-test on datasets from both SELDI-TOF-MS and microarray high-throughput analysis can accelerate the identification of tumor biomarkers. The result confirmed that CYC-1 may be a promising biomarker for early diagnosis of osteosarcoma.</p

    KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases

    Get PDF
    High-throughput experimental technologies often identify dozens to hundreds of genes related to, or changed in, a biological or pathological process. From these genes one wants to identify biological pathways that may be involved and diseases that may be implicated. Here, we report a web server, KOBAS 2.0, which annotates an input set of genes with putative pathways and disease relationships based on mapping to genes with known annotations. It allows for both ID mapping and cross-species sequence similarity mapping. It then performs statistical tests to identify statistically significantly enriched pathways and diseases. KOBAS 2.0 incorporates knowledge across 1327 species from 5 pathway databases (KEGG PATHWAY, PID, BioCyc, Reactome and Panther) and 5 human disease databases (OMIM, KEGG DISEASE, FunDO, GAD and NHGRI GWAS Catalog). KOBAS 2.0 can be accessed at http://kobas.cbi.pku.edu.cn

    Altered expression of microRNAs in the myocardium of rats with acute myocardial infarction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs(miRNAs) are important cellular components and their dysfunction is associated with various diseases. Acute myocardial infarction (AMI) is one of the most serious cardiovascular diseases. Although several miRNAs are reported to be associated with AMI, more novel miRNAs are needed to further investigate and improve certainty</p> <p>Methods</p> <p>We applied a well-established acute myocardial infarction rat model and performed miRNAs microarray experiments upon the myocardium tissue of rats with AMI and under sham control. We identified the differentially expressed miRNAs and analyzed the function of miRNA targets, transcription factors, and host genes based on bioinformatics.</p> <p>Results</p> <p>As a result, the levels of expression of seventeen miRNAs significantly deregulated, of which four miRNAs were further validated by qRT-PCR. In addition, we observed that the transcription factors, targets, and host genes of these deregulated miRNAs are enriched in cardiovascular-related functions.</p> <p>Conclusion</p> <p>We found that the miRNAs expression level altered in rats with AMI and differentially expressed miRNAs may be novel biomarkers of AMI.</p

    Development of computations in bioscience and bioinformatics and its application: review of the Symposium of Computations in Bioinformatics and Bioscience (SCBB06)

    Get PDF
    The first symposium of computations in bioinformatics and bioscience (SCBB06) was held in Hangzhou, China on June 21–22, 2006. Twenty-six peer-reviewed papers were selected for publication in this special issue of BMC Bioinformatics. These papers cover a broad range of topics including bioinformatics theories, algorithms, applications and tool development. The main technical topics contain gene expression analysis, sequence analysis, genome analysis, phylogenetic analysis, gene function prediction, molecular interaction and system biology, genetics and population study, immune strategy, protein structure prediction and proteomics

    Transcriptional Profiling Uncovers a Network of Cholesterol-Responsive Atherosclerosis Target Genes

    Get PDF
    Despite the well-documented effects of plasma lipid lowering regimes halting atherosclerosis lesion development and reducing morbidity and mortality of coronary artery disease and stroke, the transcriptional response in the atherosclerotic lesion mediating these beneficial effects has not yet been carefully investigated. We performed transcriptional profiling at 10-week intervals in atherosclerosis-prone mice with human-like hypercholesterolemia and a genetic switch to lower plasma lipoproteins (Ldlr−/−Apo100/100 Mttpflox/flox Mx1-Cre). Atherosclerotic lesions progressed slowly at first, then expanded rapidly, and plateaued after advanced lesions formed. Analysis of lesion expression profiles indicated that accumulation of lipid-poor macrophages reached a point that led to the rapid expansion phase with accelerated foam-cell formation and inflammation, an interpretation supported by lesion histology. Genetic lowering of plasma cholesterol (e.g., lipoproteins) at this point all together prevented the formation of advanced plaques and parallel transcriptional profiling of the atherosclerotic arterial wall identified 37 cholesterol-responsive genes mediating this effect. Validation by siRNA-inhibition in macrophages incubated with acetylated-LDL revealed a network of eight cholesterol-responsive atherosclerosis genes regulating cholesterol-ester accumulation. Taken together, we have identified a network of atherosclerosis genes that in response to plasma cholesterol-lowering prevents the formation of advanced plaques. This network should be of interest for the development of novel atherosclerosis therapies

    DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists

    Get PDF
    All tools in the DAVID Bioinformatics Resources aim to provide functional interpretation of large lists of genes derived from genomic studies. The newly updated DAVID Bioinformatics Resources consists of the DAVID Knowledgebase and five integrated, web-based functional annotation tool suites: the DAVID Gene Functional Classification Tool, the DAVID Functional Annotation Tool, the DAVID Gene ID Conversion Tool, the DAVID Gene Name Viewer and the DAVID NIAID Pathogen Genome Browser. The expanded DAVID Knowledgebase now integrates almost all major and well-known public bioinformatics resources centralized by the DAVID Gene Concept, a single-linkage method to agglomerate tens of millions of diverse gene/protein identifiers and annotation terms from a variety of public bioinformatics databases. For any uploaded gene list, the DAVID Resources now provides not only the typical gene-term enrichment analysis, but also new tools and functions that allow users to condense large gene lists into gene functional groups, convert between gene/protein identifiers, visualize many-genes-to-many-terms relationships, cluster redundant and heterogeneous terms into groups, search for interesting and related genes or terms, dynamically view genes from their lists on bio-pathways and more. With DAVID (http://david.niaid.nih.gov), investigators gain more power to interpret the biological mechanisms associated with large gene lists

    Bioinformatics Analysis of Macrophages Exposed to Porphyromonas gingivalis: Implications in Acute vs. Chronic Infections

    Get PDF
    BACKGROUND. Periodontitis is the most common human infection affecting tooth-supporting structures. It was shown to play a role in aggravating atherosclerosis. To deepen our understanding of the pathogenesis of this disease, we exposed human macrophages to an oral bacteria, Porphyromonas gingivalis (P. gingivalis), either as live bacteria or its LPS or fimbria. Microarray data from treated macrophages or control cells were analyzed to define molecular signatures. Changes in genes identified in relevant pathways were validated by RT-PCR. METHODOLOGY/PRINCIPAL FINDINGS. We focused our analysis on three important groups of genes. Group PG (genes differentially expressed by live bacteria only); Group LFG (genes differentially expressed in response to exposure to LPS and/or FimA); Group CG (core gene set jointly activated by all 3 stimulants). A total of 842 macrophage genes were differentially expressed in at least one of the three conditions compared to naïve cells. Using pathway analysis, we found that group CG activates the initial phagocytosis process and induces genes relevant to immune response, whereas group PG can de-activate the phagocytosis process associated with phagosome-lysosome fusion. LFG mostly affected RIG-I-like receptor signaling pathway. CONCLUSION/SIGNIFICANCE. In light of the fact that acute infections involve live bacteria while chronic infections involve a combination of live bacteria and their byproducts, group PG could represent acute P. gingivalis infection while group LFG could represent chronic P. gingivalis infection. Group CG may be associated with core immune pathways, triggered irrespective of the specific stimulants and indispensable to mount an appropriate immune response. Implications in acute vs. chronic infection are discussed.National Institutes of Health (R01 DE014079, DE15989, HL7680
    corecore